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1. INTRODUCTION

The purpose of this paper is to develop a theory for best uniform
copositive rational approximation of continuous functions. In Section 2 the
basic definitions and notations needed for the problem are presented.
Existence and characterization of best copositive rational approximants on a
closed interval are discussed in Section 3 and uniqueness and strong
uniqueness are developed in Section 4. The continuity of the best copositive
rational approximation operator is discussed in Section 5 and finally, in
Section 6, the interval [a, b] is replaced by a finite subset of it and some
discretization results are given. This paper generalizes the work of [3].

2. BASIC DEFINITIONS AND NOTATIONS

Let m and n be fixed positive integers, let llm denote the class of all real
algebraic polynomials of degree ~m, and fix f E C[a, b]. Define

R~[a, b] = {r = p!q:p E llm' q E lln' q(x) > 0, Vx E [a, b]}
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RAa, b] = {r E R:la, b]: r(x)f(x) ~ 0, Vx E la, b j},

the set of copositive rationals from R:Ia, b] with respect to f.
If r*ERAa, b] has the property that

IIf- r* II = inf Ilf- rll,
reR.tfa.bl

where

IIhil =sup{lh(x)l:xE la,b]},

then r* is a best copositive approximation to f from RAa, b]. For
rE RAa, b] define

We note that Sf is a Haar subspace in q a, b] of dimension N = 1 +
maxim + oq, n + op}, where r= pN and op, oq denote the degree of p and q,
respectively 11, p. 162]. Next, define

LO = {x E la, b]:f(x) <Of,

UO = {x E la, b]:f(x) > Of, u = UO, S = L (\ U,

where the overbar denotes the closure operator in the standard topology in
the reals.

If S contains more than m points then RAa, b] consists of just the zero
function. Thus assume that S contains k ~ m points. We say that f changes
sign at t E (a, b) if and only if t E S. On the other hand, f changes sign on
the interval Ie, d] c (a, b) with e < d if and only if t E [e, d] implies that
f(t) = 0 with e E U and dEL (or eEL and dE U). Iff does not change
sign on any interval and S contains less than m + 1 points, then f is
admissible. In what follows we shall assume that f is admissible.

For f E q a, b ] ~ R: [a, b] (~ denotes set subtraction) and for fixed
rERAa,b], xE la,b] is said to be a positive extreme point for f-r
provided f(x) - r(x) = II!- rll or x E U ~ Sand r(x) = O. Likewise,
x E [a, b] is said to be a negative extreme point for ! - r provided
f(x) - r(x) = -Ii!- rll or x E L ~ Sand r(x) = O. Let X r denote the set of
all positive and negative extreme points for f - r. Note that X r is a compact
subset of [a, b]. Now define a on X r by

a(x) = 1

a(x) =-1

if x is a positive extreme point,

if x is a negative extreme point.
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Also, define sg(f(x» for f at each x E [a, b1as follows:
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sg(f(x» = 0

sg(f(x» = sgn(f(x»

sg(f(x» = 1

sg(f(x» =-1

ifxES,

ifj(x) =1= 0,

if/(x) = 0 and xes and 3p > 0 3

(x - p, x +p) n L = ~ and (x - p, x +p) n u =1= ~,

ifI(x) = 0 and xes and 3p > 0 3

(x - p, x +p) n L =1= ~ and (x - p, x +p) n u = ~.

. 3. EXISTENCE AND CHARACTERIZATION

For copositive rational approximation the following existence theorem
holds.

THEOREM 3.1. GivenIEC[a,b], then there exists r*ERAa,b] such
that

III- r* II = inf III- rl!.
rERfla.bJ

We do not present the proof of this theorem as it is the same as that for
the usual unconstrained rational approximation [1] with the additional
observation that the copositive property is inherited by the limit rational
function.

Next, we shall show that best copositive approximations can be charac­
terized by alternation and a Kolmogorov criterion. Unlike the classical
theory, only partial results concerning a zero in the convex hull charac­
terization are known. We start by defining the concept of an alternant and
present two lemmas which are used to prove the alternation theorem.

Let Xi'YiEXr be such that Xi<Yi' (xi,y;)nXr=~' (X;'Yi)nS=
{Zi+l""'Z;+v)' Vi~O for i= 1,...,,u, and Yi~Xi+1 for i= 1,... ,,u-1. We
shall say thatf - r alternates once between Xi and Yi if a(x;) = (-1 )";+ I a(yJ
Whereas 1- r alternates twice between Xi and Yi' if sg(f(x;» a(xi) = -1,
a(x;) = (-1)"; a(y;) and there exists at least one Zj E (x;, y;) n S at which
r' (Zj) = O. In addition, f - r is said to alternate once in each of the following
cases:

(i) On (a,y) if yEXr, [a,y)nXr=~' (a,y)ns= {z1""'z,,}, v~ 1,
sg(f(y»a(y)=-1 and r has at least v+l zeros in [a,y]n(LUU)
counting multiplicities up to order 2. When this occurs, we write XI = a,
Yl = y, abusing our notation that Xi E X r •
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(ii) On (x,b) if xEXr, (x,b]liXr=~' (x,b)liS=lzk_v+l'...,zd,
v~ 1, sg(f(x)) a(x) = -1 and r has at least v + 1 zeros in [x, bJ11 (L U U)
counting multiplicities up to order 2. Here again we write x I' = X, YI' ::::: b so
that y I' ([ X r in this special case.

We say that the set of intervals {(Xi'Yi)}i~l is an alternant of length I for
f - r if f - r alternates Wi times on (xi,y;), where w; = 1 or 2 as defined
above and Lf= 1 Wi::::: I.

LEMMA 3.2. If x,y E Xr., x <y, (x,y) nxr.:::::? and (x,y) Ii S =
{zw.,zvl, v>O (v=O implies that (x,y)ns=~), then

(i) sg(f(y)):::::(-lysg(f(x)),

(ii) sg(f(x»a(x):::::-I and a(x):::::(-I)"a(y) imply that
sg(f(y» a(y) = -I,

(iii) sg(f(x» a(x)::::: -1 implies that If(x)1 < Ir*(x)l.

Proof. (i) We first note that sg(f(x» *- 0 on r::::: lx, yJ "'-' S by
definition. Furthermore, we claim that sg(f(x» is constant on each
connected subset of r. To see this it suffices to consider [x, z 1)' Thus,
assume that there exists to E (x, z I) such that sg(f(to»::::: -sg(f(x». Without
loss of generality we shall assume that sg(f(x» = 1, then there exists

PI' P2 >0 for which

(x - PI' X+PI) n U *- ~,

(to ~ P2, to +P2) n U = ~,

(x-Pl'x+PI)nL=~,

(to - P2' to +P2) 11 L *- ~.

Let 11::::: inf{t E [x, to +P2J: tEL I, then /1 > x (since I( ELand x It:. L). Also
II must be an element of U (if not thenfchanges sign on an interval, namely,
lul,/I]' where ul:::::sup{tE[a,bJ;t~/l'tEU}). Hence IIELI1U=S,
which is a contradiction since II E (x, Z I)' Thus, sg(f(t» = sg(f(x» for all
t E (x, Z I)' Finally, observe that sg(f(x» changes sign at each point of S.
Indeed, each point of S is a cluster point of L 0 and un by definition and the
above argument shows that the points of S locally separate L 0 and £jJ. From
this (i) follows.

(ii) If sg(f(x» a(x) =-1 and a(x) = (-1Y a(y), it follows from (i) that

sg(f(y» a(y) = (-1)" sg(f(x» . (-I)" a(x) = sg(f(x» a(x) =-1.

(iii) We show that sg(f(x» a(x) = -1 implies that If(x)1 <Ir*(x)l. We
consider the case of sg(f(x»)::::: 1 and a(x) = -1. Then either f(x) > 0 or
f(x) = 0 and there exists P > 0 such that (x - P, x + p) 11 U *-~,

(x-p,x+p)nL=1/J and either f(x)-r*(x)=-llf-r*1\ or xEL,.,.,S,
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r*(x) = O. We notice that if f(x) >0 or there exists p >0 such that
(x - p, x +p) n U ,*~, (x - p, x +p) n L =~, x cannot be an element of
L ~ S. Therefore, in both cases we have

f(x) - r*(x) = - /If - r* /I ~ 0 s;;,f(x) < r*(x).

Similarly, if sg(f(x» = -1 and a(x) = 1, we can show that

r*(x) <f(x) s;;, o. I

LEMMA 3.3. Assume that xi'YiEXr" (xi,y;)ns= {Zi+I'""Zi+v} and
f - r* alternates Wi times between Xi and Yi' Let r E RAa, b1 satisfy
Ilf - rll < /If - r* II, then:

(i) Ifr*(xi) = r(xi) = 0 (or r*(y;) = r(y;) = 0), then r* - r has at least
v+Wi + 1 zeros in [Xi' Yi]'

(ii) If r*(xi) '* r(xi), r*(y;) '* r(Yi) and Wi = 1, then r* - r has at least
v +Wi zeros in (xi,y;).

(iii) If Wi = 2, then r* - r has at least v+ Wi zeros in (xi,y;).

Proof (i) In this case Wi must equal 1 by Lemma 3.2 since r*(x;) = 0
implies If(xi)1 t Ir*(xi)1 which implies that sg(f(xi» a(xi) '* -1 and neither
r* nor r can change sign at Xi (as Xi E L U U~ S). Therefore r*'(xi) =
r' (Xi) = 0 so that r* - r has at least v+ 2 = v+Wi + 1 zeros in [Xi' Yi]' (The
same argument establishes this result when r*(Yi) = r(y;).)

(ii) Suppose that Wi = 1 and consider the case where a(xi) = -1 and v is
odd. In this case we must have a(Yi) = -1, r*(x;) > r(x i) and r*(Yi) > r(yJ
Now, if r* - r has only Zi+ 1"'" Zi+,' as simple zeros then (r* - r)(x;) >0
and v odd implies that (r* - r)(Yi) <O. Thus r* - r must have at least one
of Zi+I"'" Zi+v as a zero of order at least 2, or another zero in (xpY;)
different from Z i + 1"'" Z i+ v' Hence r* - r has at least v +Wi (= V + 1) zeros
in (Xi,yJ The other cases follow by similar arguments.

For the two special cases where WI = 1 on (a,y) with [a,y)nXr• = ¢
(that is, XI = a and Y. =Y) or Wu = 1 on (x, b) with (x, b] nxr• = ¢ (that is,
Xu = X and Yu = b), consider the case of WI = 1 on (a, y) with
[a,y)nXr.=¢ (the other case follows by a similar argument). In this case
sg(J(y»a(y)=-1 and r* has at least v+ 1 zeros in [a,y]n(LUU),
where (a,y]nS= {zl'""zv} with v~ 1. Now sg(J(y»a(y)=-1 implies
that Ir*(y)1 >Ir(y)1 (since, for example, if sg(f(y» = 1 then a(y) = -1 only
withf(y) - r*(y) = - /If - r*If).

Also, r* has at least v+ 1 zeros in the set [a,y] n (L U U) counting
multiplicities up to order 2, which implies that r*'(zj) = 0 for some
jE {l,...,v} as [a,y)nXr.=¢ allows r*(x) =0 for xE [a,y]n(LUU)
only if xES. If r* - r has a zero in (Zj' y) other than zj+ 1''''' Z" we are
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done. On the other hand, if r* - r vanishes in (Zj' y) only at Zj+ 1"'" z,. and
each of these is a simple zero then we have Ir*(t)1 >Ir(t)\ in every interval of
the form (z /-1' ZI)' 1= j + 1,..., v. Looking at (Zj' Zj+ 1) this inequality implies
that r'(zj) = 0 and hence r* - r has at least v + 1 zeros in (a,y).

(iii) Suppose that w/ = 2. Here we must have

sg(f(xJ) a(xJ = sg(f(yJ) a(y/) = -1,

and

If(x/) - r*(x/)I = If(y/) - r*(y/)\ = Ilf - r* II

so that

Ir*(xJI > Ir(x/)I and

Let Zj be the first element of (x/,y/) n S for which r*'(zj) = O. Now, suppose
that r*-r vanishes in (x/,Zj) only on jz/+p""Zj_l} (set is empty if
j = i + 1) and all the zeros are simple. Then, Ir*(t)1 > Ir(t)j must hold in
(Zj - p, Zj) for some p >O. Thus, r' (Zj) = 0 as r, r* E C2 [a, b]. But rand r*
change sign at Zj and hence r//(zj) = r*//(zj) =0; that is, r* - r has Zj as a
zero of order at least 3 and the result follows. Now assume that r* - r has
simple zeros at zj+P"" Zj_l and one additional zero in (x/, Zj) '"
jZj+ 1 , ... , zj-ll. This implies that Ir(t)1 >Ir*(t)1 holds on (Zj_l - e, Zj) for
some e >O. Thus, if r* - r has only Zj+ 1 , ... , Z/+v as simple zeros and no
other zeros in (Zj,y/) then we must have Ir(y/)I > Jr*(yJI, which is a
contradiction. Hence r* - r must have an additional zero in (Zj'Y/) proving
that r* - r has at least v +w/ zeros in (x/,y/). The proof of Lemma 3.3 is
now complete. I

THEOREM 3.4 (THE ALTERNAnON THEOREM). Let f E C[a, b] '" R: [a, b]
be an admissible function and S = jz1"'" zd, k ~ m as described earlier.
Then r* E RAa, b] is a best approximation to I if and only if there exists a
set of open intervals j(x/,y/)}f=l which is an alternant of length N - k lor
f - r*, where

N = 1 +max{n +8p*, m +8q*}, r* =p*/q*.

Proof. (¢=) Suppose that {(x/,y/)}f=l is an alternant of length N - k
for 1- r* and there exists r E RAa, b1for which III- rll <III- r* II. Then,
using Lemma 3.3, we show that r* - r has at least N zeros (counting
multiplicities up to order 3). To that end, let p,...,,u} =!AU!B where iEIA
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if and only if (i) of Lemma 3.3 holds true on (xi'Y;) and iEfB otherwise,
i = 1,... ,,u. Now, assume that there are

Yf elements of S in U (Xi' Y;),
lElA

fJ elements of S in U (Xi' Y;),
;EIB

and

k - Yf - fJ elements of S in the rest of [a, b ].

It is now easy to observe that r* - r has at least

Yf + L w; + card fA zeros in U (Xi' y;),
lElA iEI A

fJ + I W; zeros in U (x;,y;),
;EIB ;EIB

and

k - Yf - fJ zeros in the rest of [a, b].

In addition,

Yf + L w; + card fA + fJ + I W; + k - Yf - fJ
;EIA iEIB

II

= k + I Wi + card fA = k +N - k + card fA?t- N.
i=1

This shows that r* - r has at least N zeros in la, b], which implies that
r* == r (since r* - r = (p*q - pq*)/q*q with the degree of the numerator
~N - 1).

(=» Suppose that IE R:[a, b] and r* E Rt!a, b] is a best copositive
approximation to f Assume that {(xi,yJli'=1 is an alternant for1- r* with
L:i'= I w; = 1< N - k where I is maximal. We shall construct a new function
r E Rt!a, b] for which 111- rll < III- r* II, thus contradicting the assumption
that I <N - k. We assume that S -=1= ¢. The assumption that I is maximal
requires that for each i= I,...,,u-I there are no alternations in [y;,xi + I ].

Specifically, for each x E (y;,X;+I] nx,. with [Yi'X] n S= {Zi+1"'" zi+,.l,
v?t- 0 we must have a(x) = (-IY a(yJ, Furthermore, if there exists
zjE IYi,x]nS with r*'(Zj) = 0 then we must also have Ir*(Yi)I~I/(y;)1

(since I/(Yi)1 < Ir*(YJI implies that sg(f(y;)) a(yJ = -I, which in turn
implies that 1- r* alternates twice between Yi and x) and hence Ir*(x)1 ~

I/(x)l·
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We begin by constructing a set of I + k distinct points in (a, b) and a
function p + r*q E Sr' that vanishes at these points. Then we can find a
rational function belonging to RIfa, b1that gives the required contradiction.

Consider the interval (Xi'Yi) for i = 1,... ,,u. If Wi = 1 define a point
Si E (Xi' Yi) as follows:

First, consider the case where (x" Yi) n S =¢. If r*(t) =1= 0 'tit E (Xi' y;),
set s i = (Xi +y;)j2. On the other hand, if r*(t) = 0 for some t E (x;, Yi)' set
ti = min{t E (x;,y): r*(t) = O} and tI' = max{t E (Xi' y;): r*(t) = O}. Now, if
x; E X r• and sg(f(x;» a(x;) = 1, set s; = (tI' +y;)/2; if x; E X r• and
sg(f(x;» a(x;) = - I, set s; = (ti +x;)j2. Next, consider the case where
(xi,y;)ns= {zi+I,,,,,zi+vf. Define ti and ti' as above and note that
tf~Zi+1' tI'>z;+v' If sg(f(X;»a(x;) = 1 set si=(tI'+y;)j2; if
Sg(f(Xi» a(x;) = -I, set s; = (ti + x;)/2; if XI = a, [a,YJ nx,. = ¢, set SI =
(t;' +YI)j2. Observe that if '/(x;)1 < Ir*(xi)1 and there exists Zj E (x;,y;)n S
for which r*'(zj) =0, we must have I/(Yi)1 > Ir*(Yi)1 since Wi = 1.

Finally, consider the case where Wi = 2. In this case (x;, y;) n s =
{Z;+I"",Zi+v}' v>l, r*'(zj)=O for at least one Zj. i+l{j~i+v,

I/(x;)1 < Ir*(xi)1 and I/(Yi)1 < Ir*(y;)I. With ti and tf' defined as before, set
sf = (ti +x i)j2 and sI' = (tI' +y;)j2.

Let T denote the set of all the points Is;} u Is;} U {sf'} constructed above
and set Z = Tu S. Note that Z consists of precisely 1+ k <N distinct
points. Since S" is a Haar subspace of dimension N on an interval larger
than [a, bJ, there exist pEnm and q E n n such that p + r*q has simple zeros
only at the 1+ k points of Z. We shall show that there exists c> 0 such that
r, = r* - c(p + r*q)/(q* + cq) is copositive with I and 111- r,1I <III- r*11
(notice that r£ = (p* - cp)j(q* + eq». Suppose that v(y) = (p + r*q)(y)
satisfies sgn V(YI) = -a(YI) (this can be easily done by multiplying v by -1
if necessary). Since v has simple zeros at the I +k points of Z and only at
these points, it is easy to conclude that sgn vex;) = -a(x;) and sgn v(y) =
-a(y;) for i = 1,... ,,u provided that X I E X r ., Yu E X r "

Now we consider the interval [Yi,xi+ll for fixed i, i= 1,... ,,u -1 and we
first show that there exists g> 0 such that for all e, 0 < c ~ c, we have
maxXE[Yi.Xi+,1 '/(x) - r.ex)/ <III- r*ll· Since sgn v(y;) = -a(Yi) and 1- r*
does not alternate on [Y" x i+.], we must have sgn vex) = -a(x) for all
xE[Yj,xi+dnxr " Thus, if [y"xi+llnS={zi+I"",zi+l'} and we set
to=Yi' tj=z;+J' j=I,... ,v, tv+1=Xi+l , then for any tE[tj,tJ+1 ],

j=O, 1,... , v we have a(y;)v(t)(-lY~O and for any xE [tj,tj+dnXr"
a(x) = (-I)j a(yJ Fix j, 0 ~j ~ v, and without loss of generality assume
that a(y;) = 1 and j is even. Then, for all tE[tj,tj+I], -II/-r*//<
(f - r*)(t) ~ II!- r* II. Thus, by the continuity of 1- r* and the
compactness of [tj , tj+ 1]' there exists ~ > 0 such that

(f - r*)(t) :> -II!- r* II + (,
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Now let e' >0 be such that e' Iq(t)1 <q*(t) for all t E [tj , tj+ 1]' then for
everye such that 0 <e ~ e' , q* + eq is positive on [tj , tj+I] and reconverges
uniformly to r* on [tj , tj+ 1] as e -+ O. Thus, noting that vet) ~ 0 for all
t E [tj , tj+1] since j is even and aCYl) = 1, there exists ej with 0 <ej ~ e' such
that for every e with 0 < e ~ ej and t E [tj , tj+ I]'

(J - re)(t) = (J - r*)(t) + (q* e:~~)(t) ~ -Ilf- r* II + ; >-lif- r* II.

Also, since vet) <0 on (tj, tj+1), then for e >0 and tE (tj, tj+I)'

*) ) ev(t) II *II(J - re)(t) = (J - r (t + ( * )( ) < f - r .q + eq t

But (J - re)(tl) = 0 for any I such that 0 < I < v + 1, veto) <0, and
(_l)v+1 V(tV+I) > 0 imply that

(f - re)(t) <IIf- r* II

Thus, we have

for any t E [tj , tj+ 1 ],j even.

-Ilf- r* II < (J - re)(t) < IIf - r* II,

which finally shows that

A similar argument works for odd j such that 1~j ~ v. Define
e = mino<;;j<;;v ej , then we have

max I(f - re)(x)1 < Ilf - r*ll,
xel Yi'Xi+ I)

Ve30<e~e.

Next we show that there exists e> 0 such that for each e, 0 < e ~ e, re is
copositive with f on [y;,x;+II. Note that both f and v change sign in
[y;,x;+ll at the points of [y;,x;+llns. Thus either v or -v is copositive
with f on [y p Xi +II. First, consider the case where there exists
zjE [ypxi+llns with r*/(Zj) =0. In this case Ir*(Yi)I~lf(yJI and we
claim that f is copositive with -v. Indeed, suppose that a(yJ = -1, then
either f(yJ - r*(yJ = -Ilf- r*lI, which implies that f(yJ < r*(yJ and
hence Ir*(y;)1 ~ If(y;)1 implies that fey;) <0, or r*(y;) = 0 and y; E L,
which shows that f and -v are copositive since sgn v(yJ = -a(yJ = 1. The
case when aCYl) = 1 follows in the same manner. Thus, in this case, for any
£>0 with llq(x)l<q*(x) for all xE[ypXi+l], we have re andfare
copositive (since re=r*-ev/(q*+eq» on [y;,xi+,1 for all e with
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O<e~e. Second, consider the case where [Yi,xi+t]nS={zi+t"",Zi+"}'
v~ 0 and r*'(zj) #:- 0 for all Zj' If/and -v are copositive we are done. Thus,
assume that I and v are copositive on [Yi'X i+.]. Suppose that
x E (L U U) n ([ Y;. x i+t] ~ S). Then we claim that r*(x) #:- 0. Indeed, if, for
example, xELn([y;.xi+d~S) and r*(x) =0, then xEXr • and
a(x) = -1. But x E L "" S implies that v(x) <0 since v is copositive with f,
which contradicts sgn(v(x)) = -a(x). Thus r* and v vanish only at the
points of S in r = [Yi' Xi +t] n (L U U) and they both change sign at these
points. Also, sgn r*(x) = sgn vex) for each x E r (since f, r* and v are
copositive). Now, at each Zj E rn S we have r*'(z) #:- 0, thus there exists
aj~~min{zi+t-zi:i=l, ...,k-l}, aj>o such that r*'(x)#:-O in Ij =
[Zj - OJ' Zj +OJ By the mean value theorem, for each x E Ij , there exists ¢x
and 1Jx between x and Zj such that r*(x) = r*'(¢x)(x - z) and vex) =
v' (1Jx)(x - Zj)' Hence, we can select ej >0 such that 0 < e ~ ej implies
Ir*(x)1 ~ e Iv(x)j for all x E Ij (by choosing ej = mintE1j Ir*'(t)jv'(t)J). Repeat
this argument for each Zj Ern S and let e' = minj ej . Thus jr*(x)j ~
e'lv(x)\ for all xEUj=tIj' Now r-Uj=t(Zj-aj,Zj+aj ) is a compact
subset of [a, b] on which r* does not vanish,. hence there exists e" > 0 such
that Ir*(x)l~e"lv(x)1 for all xEr-Uj=t(Zj-aj,Zj+aj). Choose eo>O
such that ,eolq(t)l<q*(t) for all tE[Yi'Xi+l ] and let m=
mintE[y/,x/+Jl{q*(t) + eoq(t), q*(t)}. Note that q*(t) + eq(t) ~ m for all
t E [y;. x i+.] and 0 < e ~ eo' Define eby e= min{eo' e', e", me', me"}. Then
for any tE [Yi'Xi+t ] we have that Ir*(t)l~e(lv(t)J)j(q* +eq)(t) for any e
satisfying 0 < e ~ e. From this it follows that re is copositive with I on
[Yi'Xi+t] for every e with 0< e ~ e.

Next, we consider an interval of the form [Xi' Yd, i fixed, 1 ~ i ~ p.. Select
1J > 0 sufficiently small such that 1- r* does not alternate on either
[x;. Xi + 1J] or [Yi - 1J, Yi]' Since sgn vex;) = -a(xi), sgn v(y;) = -a(y;), by
using continuity and compactness as before, we can show that there exists
e' > 0 such that 0 < e ~ e' implies

max I/(x) - r.ex)1 <III- r*ll·
XE(Xj,Xj +~JU[Yj -~,yil

Also, for e >°sufficiently small,

max I/(x) - re(x)1 <III- r*11
XE(Xj +~,Yj -~J

since (Xi' Yi) n X r • =~, which implies that I/(x) - r*(x)1 <Ilf- r* II for all
x E [Xi + b, Yi - bj. (Note that this is also true if Xl = a and [a, Y.) n X r • = ~

or YIJ = band (xlJ' b] n X r • = ~.)
Now it remains to prove that for e> 0 sufficiently small, re is copositive

with f on [Xi' yJ First we note that if Wi = 1 and sg(f(xi)) a(x;) = 1 so that
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sg(f(x;» sgn v(x;) = -1 then the facts that s; >Zj for each Zj E Ix;, yd n S
and f, v change sign only at the points of Z imply that f and -v are
copositive on [Xi' s;l. Thus, r, is copositive withf on Ix;, s;1 for every e > 0
satisfying e Iq(/)1 <q*(/) for all IE Ix;,y;]. Now, consider the interval
(s;,y;) and note that s; = (Ii' + y;)/2 implies that r*(t) =1= 0 for any
t E Is;,yJ Also, a(x;) = (_1)v+1 a(y;) and sg(f(x;) = (-1)" sg(f(y;) (by
Lemma 3.2(i» imply that sg(f(y;» a(y;) = -1, hence ir*(y;)1 > If(Yj)! (by
Lemma 3.2(iii» (that is, r*(y;) =1= 0). Thus r*(t) =1= 0 for all t E Is;, y; I and
by continuity and compactness arguments as before we can find eI > 0 such
that 0 < e~ et implies r, and fare copositive on Is;, y; I and hence on
Ix;, y;]. Similar arguments hold in the case of w; = 1 and sg(f(x;» a(x;) =
-lor WI = 1, XI = a and sg(f(YI» a(Yt) = -1, or w/l = 1, Y/l = band
sg(f(xJ) a(x/l) = -1. Now assume that w; = 2. In this case there exists
zjE [x;,y;]nS such that r*'(zj)=O and v vanishes at sf <Z;+I < ,.. <
z;+v < si' and only at these points in [x;, y;l. Also sg(f(x;» a(x;) =
sg(f(y;» a(y;) = -1. Hence sg(f(x;» sgn v(x;) = sg(f(y;» sgn v(y;) = 1
andfand -v are copositive on lsi, srJ. For the intervals [x;, s;] and Isi',Yd,
r* is never zero (by choice of s; and si' and the fact that If(x;)1 <Ir*(x;)1
and If(y;)1 < Ir*(y;)/). Using the same argument as given before,j and r, are
copositive on these intervals for a proper choice of e > O. Thus r, is
copositive with f on Ix;, y;].

Finally, consider the case where Y/l <b. Here, using the same argument
given for the ly;,x;+11 case we can show that maxXEly~.bllf(x)-r,(x)1<
IIf - r* II for e> 0 sufficiently small. Moreover, if sg(f(Y/l» a(Y/l) = 1 then
sg(f(Y/l»sgnv(Y/l)=-1 implies that f and -v are copositive on [Y/l,b]
and hence r, is copositive withfon [Y/l' bl for any e > O. On the other hand,
if sg(f(Y/l» a(Y/l) = -I, then f and v are copositive and r* vanishes in
[y/l' bI only at [y/l' bIn S and each of these is a simple zero. Then, by the
same argument used for the [y;,x;+11 case with r*'(z)=I=O for all
Zj E [Yi' x; + t] n S, we can show that for e >0 sufficiently small, r, is
copositive withfon [Y/l' b]. Similarly, we can show that r, is copositive with
fon [a,x l ] if Xl> a.

This covers all possible cases and shows that for a proper choice of e > 0
sufficiently small, r, is copositive with f on [a, b] and Ilf - r,11 < Ilf - r* II,
which is a contradiction, and the proof of the alternation theorem is now
complete. I

The second type of characterization for a best approximation, r*, is a
modified Kolmogorov-type characterization. Define

Sr' = {p + r*q:p E llm' q E lln'P copositive with!},

SJ = {x E [a, b]: If(x) - r*(x)1 = Ilf - r*II},
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S 2 = {X E [a, b I: r* (x) = 0, x E (L U U "" S) },

a(x) = sgn(f(x) - r*(x» for xES 1 U S2

(a(x) is defined as before for x E SJ U S2)' Thus, we have

THEOREM 3.5 (KOLMOGOROV CRITERION [5]). LetfE CIa, b I"" R~[a, bl
and r* E RAa, bI, then r* is a best approximation to f from RAa, bI if and
only iffor each hE Sr" minXEs ,us2a(x) h(x) :< O.

The proof of this result follows via the usual arguments. Note that,
comparing this Kolmogorov criterion for copositive rational approximation
with that of rational approximation with interpolation [4], one might expect
that S;, = {p + r*q: p E JIm' q E JIn , p(x) = 0, \Ix E S} could be used
instead of Sr' = {p + r*q: p E JIm' q E JIn, P copositive with!}. Indeed, the
Kolmogorov criterion holding for S;, is a sufficient condition for r* to be a
best copositive rational approximation. However, with r* being a best
approximation to f from RAa, b I, the condition minxEs,us2 a(x) h(x):< 0 for
each hE S;, need not hold whenever there exist x,y E X r , such that x <y,
(x, y) n X r , = ~, and f - r* alternates twice on (x, y). This can be shown by
considering simple examples. Thus, the copositiveness assumption in Sr' is
essential for Theorem 3.5.

As the final type of characterization for a best approximation r* we
consider the possibility of an "origin in the convex hull" type of charac­
terization. Here, the results are not as complete as that for the standard case.
Once again, we simply state these theorems without proofs as the standard
arguments suffice.

THEOREM 3.6 (SUFFICIENCY [5]). If the origin of Euclidean I-space, Q!'
belongs to the convex hull of the set {a(x)x: x E X r ,}, x = (~l(X),... , ~t<x»
where {~l,...,~tl is a basis for JIm_kw(x)+r*(x)JIn , w(x)=(x-z l ) .. •

(x - Zk)' then r* is a best approximation to f from RAa, b I.
It is worth mentioning that the conclusion in Theorem 3.6 can be made

stronger by replacing RAa,b] by R':= {rER':[a,b]: r(zJ=O, i= l,...,k}
without any vital change in the proof. On the other hand, the converse of
Theorem 3.6 does not hold true and to prove necessity, more restrictions are
needed that make the origin belong to the convex hull of a smaller set as
shown in the following theorem.

THEOREM 3.7 (NECESSITY [5 D. Suppose that r* is a best approximation
toffrom RAa, b], then QI belongs to the convex hull of {a(x)x: x E X r .}, X=

(¢I(X), ... , ¢lx» where {¢1"'" ¢tl is a basis for Sr' = {p + r*q: p E JIm'
q E JIn , P has same zeros as p * and of at least the same orders f·
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4. UNIQUENESS AND STRONG UNIQUENESS

OF BEST ApPROXIMATIONS
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We start this section with a lemma which plays an essential role in the
uniqueness and strong uniqueness for best copositive rational approximation.

LEMMA 4.1. Let r*=p*jq*ERAa,b] be a best approximation to
fE C[a,b] ",R:[a,b]. If there exists r=pjqERAa,b] such that
a(x) [p(x) - r*(x) q(x)] >°for all x E X r ., then p - r*q =- 0.

Proof Suppose that there exists r = pjq E RAa, b] such that a(x)[ p(x) ­
r*(x) q(x)] >°for all x E X r •• Further, assume for a proof by contradiction
that p - r*q i= 0. Under this assumption, we show that there exists an
hE Sr' with a(x) hex) >°for all x E Xr• which is a contradiction to the
Kolmogorov criterion given in Theorem 3.5. To that end define

and note that

ft=p+p*, q=q+q*, r=ftN,

a(x)[ft(x) - r*(x) q(x)] >0,

(since ft - r*q = (ljq*)[(p +p*) q* - p*(q +q*)] =P - r*q). Now, our
object is to find PI E Ilm , q. E Iln such that

(i) ft + API is copositive with f,

and

(ii) a(x)[(ft +API) - r*(q +Aq\)](X) >0, Vx E X r ., where A is a positive
constant.

First, observe that

(ft + API) - r*(q + Aql)=~ [(p +p* +API) q* - p*(q + q* +Aql)]
q

1
= - [pq * +AP q* - p *q - AP*q ]q* I I

= (p - r*q) +A(PI - r*ql)'

Thus,

a(x)[(ft + API) - r*(q +Aq)](X)

= a(x)(p - r*q)(x) +Aa(x)(Pl - r*ql)(x).
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Hence for A >0 chosen sufficiently small, conditions (i) and (ii) stated above
become equivalent to:

Find PI E JIm and ql E JIn such that

(i') PI(Z) = 0 for all Z E S and PI is locally copositive with f at every
Z E S at which ft'(z) = 0 (we say that g is locally copositive with f at
x E [a, b] if there exists 0 > 0 such that g is copositive with f on
[x - 0, x +0] n [a, bD.

(ii') a(x)(PI - r*ql)(x) >0 at every x E X r• at which (p - r*q)(x) = 0,
say (PI - r*ql)(x) = a(x) at these points.

It is worth noting that if x E 82 = {x E X r.: f(x) = 0, x E (UU L) - S}
then (ii') implies that PI is locally copositive with f at x. This is because
x E 82 implies that ft(x) =p(x) +p*(x) = 0 so that p(x) =p*(x) = 0
implying that (p - r*q)(x) = 0 and hence PI(X) = a(x) by (ii').

Now, if (i') is to be satisfied then we may write (PI - r*ql)(x) in the form

where P2=PI/f17=I(X-Z;), f=Plq* with p=p*/f17=I(x-z;). Thus
P2 - fql E JIm- k + fJI n , which is a Haar subspace of qa, b1of dimension

d = 1+ max {m - k +oq *, n +op}

= 1 +max{m-k+oq*,n-k+op*}

= 1 + max{m +oq*, n +op*} - k = N - k.

Assume that £1 ,..., £{ are the elements of S at which ft'(z) = 0 and XI'"'' x f

are the zeros of P - r*q in X r•• Thus, our problem reduces to finding
nonzero polynomials P2 E JIm_k and ql E JIn such that

and

j = 1,..., I,

k

Il (Xj - Z;)[(P2 - fql)(x j)] = a(xj),
1=1

j= 1,... , t,

which can be done if I + t ~ d (by definition of Haar subspace of dimension
d). Now, if 1+ t ~ d, then there exists P2 - rql with the above properties
implying that there exists an h = ft + API - r*(ij + Aq\) E Sr' such that
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a(x) h(x) >0 for all x E X r ., a contradiction to Theorem 3.5. On the other
hand, if 1+ t > d we claim that p - r*q has more than N zeros in [a, b1
(since p'(ij ) = 0 implies that p - r*q has a triple zero at every i j , j = 1,..., I;
and X r • n S = ~ implies that p - r*q has at least

31 + k - I + t = k + I + t + I > k +d + I = N + I

zeros in [a, b ]). But p - r*q E Sr" a Haar subspace of q a, b] of dimension
N. Thus, p - r*q == 0, again a contradiction, and the proof is now
complete. I

The following corollaries follow immediately.

COROLLARY 4.2 (UNIQUENESS). Let fE qa, b] '" R~[a, b]. Thenfhas a
unique best approximation from RAa, b ].

COROLLARY 4.3 (MODIFICATION OF THEOREM 3.5). Let r* be the best
approximation to f from RAa, b]. Then for every hE Sr' with IIhll = 1,
minxExr• a(x) h(x) <O.

Before stating the strong unicity theorem for copositive rational approx­
imation we need to define the concept of normality which plays an essential
role in the strong uniqueness result for the standard rational approximation
theory. The proof of the theorem is not presented here as it is essentially the
same as for standard rationals [1].

DEFINITION 4.4. LetfEC[a,b] and r*=p*jq* be the best approx­
imation to f from RAa, b ]. f is said to be copositive normal if either op* = m
or oq* = n.

THEOREM 4.5 (STRONG UNIQUENESS). Let r* E RAa, b] be the best
approximation to f from RAa, b] with (p*, q*) = 1, where fE qa, b]. Iff is
copositive normal then there exists a constant y = y(f) > 0 such that for all
rE RAa, b]

Ilf - rll ~ Ilf - r*11 + y Ilr- r*ll·

The condition of copositive normality stated in Theorem 4.5 is essential
for strong uniqueness to hold true. This is shown by the following theorem in
which we assume, without loss of generality, that [a, b] = [0, 1]. The proof is
omitted for brevity and it can be found in [5].

THEOREM 4.6. Let fE qo, 1] '" R~[O, 1] be non-copositive normal and
r* = p*jq* be the best copositive approximation to f from RAO, 1], then the
strong uniqueness theorem does not hold for f
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5. CONTINUITY OF THE BEST COPOSITIVE RATIONAL

ApPROXIMATION OPERATOR

As in the standard rational approximation theory, the strong uniqueness
result implies Lipschitz continuity of the best approximation operator at
copositive normal points. However, we need to restrict the domain of this
operator to a subset of the continuous functions defined on la, b] and
copositive with f in order for this result to be true.

Let fE C[a, b]. For any g E C[a, b], let reg) be the best copositive
rational approximation to g from Rgla, b]. Define

CAa,b] = {gE C[a,bl:g(x)f(x)~O,VxE la,b 1!

and

CAa, b] = {g E CAa, b]: g(x) = 0, Vx E [a, b] '" (L U U)}.

Then we have

THEOREM 5.1. If fERAa,b] or f is copositive normal then r is
continuous in the sense that there exists a /3 >0 such that g E cAa, bI
implies that

II reg) - r(f)11 ~ /311 g - fll·

In the above theorem, the restriction of the domain of the operator to
CAa, b] is essential. An example to illustrate this fact is given in [5].

6. DISCRETIZATION

In this section the set [a, b] is replaced by finite subsets of it and a brief
summary of some results is presented. We assume that Xj' j = 1,2,... , is a
finite subset of [a, b] containing j points, Xj C X j+I for all j and that Xj
becomes dense in [a, b] as j -+ 00 (that is, each point of [a, b] is either a limit
point for UJ= I X j or belongs to X j for j ~jo)' In this case, there may exist no
r/ E Rj.X) such that rl is a best copositive rational approximation to f on
Xj' where RJXj) = {r = pjq: p E lIm' q E lIn' q> 0 on Xj and r(x)f(x) ~ 0
on Xj}' However, we have

THEOREM 6.1 [5]. LetfE C[a,b] and r* be the best rational copositive
approximation to f from RAa, b]. If ej = infrERpj) Ilf- rll xj , e = IIf - r* Illa,b]

then ej -+ e as j -+ 00.
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A more general result about approximating on finite sets that are
becoming dense in an interval is given in the following theorem.

THEOREM 6.2 [5). Let r* be the best approximation tofE C[a,b)from
RAa, b]. Let {J.i} be a sequence offunctions defined and copositive with f on
Xj and {rj } be a sequence of rationals such that rj = pjqj E RJX;),
II pjll + II qjll = 1 and 11J.i - rJXj ~ ej + l/j, where ej = infrER//xj) 11J.i - rllx;"
Suppose that

(i) X j c Xj+ I and X j becomes dense in fa, b I as j --+ 00, and

(ii) J.i --+ f as j --+ 00 (i.e., M j =11J.i - fllx j --+ 0 as j --+ (0).

Then

(a) 11J.i -fllxj --+ Ilf- r*1I and

(b) rj --+ r* in measure.

Moreover,

(c) iff is copositive normal then rj --+ r* uniformly.

For characterization of best copositive rational approximations in this
setting we refer to restricted range work by K. A. Taylor [6) and Loeb et al.
[2). This theory contains the theory of best copositive rational approx­
imation on X whenever X is a finite subset of la, b]. Here we state two of
their theorems modified to our notation. As before the set Sr' is defined by

Sr' = {p + r*q:p E JIm and q E JIn}.

THEOREM 6.3 (KOLMOGOROV CRITERION 16]). Let fE C(X) and
infrER/(x) Ilf - rll == ~ > O. Then r* is not a best copositive rational approx­
imation to f if and only if there exists an h E Sr' such that a(x) h(x) > 0 for
all x E X r•.

THEOREM 6.4 (origin in the convex hull characterization [2 D. Let
fE C(X) and r* E RJX), then r* is a best approximation to f from RJX) if
and only if the origin of Euclidean N-space lies in the convex hull of {a(x)x:
x E X r• f, where x= (~I (x), ..., ~N(X», {~1' ..., ~N} is a basis for Sr"

Remark. It is worth noting that the property of the origin in the convex
hull holds as a necessary and sufficient criterion for the best copositive
rational approximation when approximating on a finite set. However, this
property does not hold true on Ia, b]. More work needs to be done to give an
accurate mathematical illustration for this fact.

640/35/3-4
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