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1. INTRODUCTION

The purpose of this paper is to develop a theory for best uniform
copositive rational approximation of continuous functions. In Section 2 the
basic definitions and notations needed for the problem are presented.
Existence and characterization of best copositive rational approximants on a
closed interval are discussed in Section3 and uniqueness and strong
uniqueness are developed in Section 4. The continuity of the best copositive
rational approximation operator is discussed in Section 5 and finally, in
Section 6, the interval [a, b] is replaced by a finite subset of it and some
discretization results are given. This paper generalizes the work of [3].

2. Basic DEFINITIONS AND NOTATIONS

Let m and n be fixed positive integers, let 77,, denote the class of all real
algebraic polynomials of degree <m, and fix f€ C[a, b]. Define

Ryla,bl={r=p/q:pe N, ,q€,, q(x)>0,Vx E |a, b]}
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and
R/a, b) = {r€R}[a,b]: r(x)f(x) >0,Vx € [a,b]},

the set of copositive rationals from R'[a, b] with respect to f.
If r* € R{a, b] has the property that

Wf=r*ll= _inf Jf—r,

reRqda.b]
where~
| 2]l = sup{|A(x)]: x € {a, b]},

then r* is a best copositive approximation to f from Ra,b}. For
7€ R/a, b] define

S;={p+fqgpell,,q€ ).

We note that S, is a Haar subspace in C|a,b| of dimension N=1 +
max{m + 84, n + 8p}, where 7 = p/§ and 9P, &4 denote the degree of § and 4,
respectively [1,p. 162]. Next, define

L’ = {x € [a, b]: f(x) < 0}, L=L
Ul=i{x€labl:fx)>0}, U=U"S=LNU,

-

where the overbar denotes the closure operator in the standard topology in
the reals.

If § contains more than m points then R{a, b] consists of just the zero
function. Thus assume that S contains k < m points. We say that f changes
sign at ¢t € (a, b) if and only if t € S. On the other hand, f changes sign on
the interval [c,d] < (a,b) with ¢ < d if and only if € [¢,d] implies that
SO =0 with ce U and d€L (or c€ L and d € U). If f does not change
sign on any interval and S contains less than m 4+ 1 points, then [ is
admissible. In what follows we shall assume that f is admissible.

For f&€ Cla,b] ~ R]{a,b] (~ denotes set subtraction) and for fixed
r€Ra,b], x€la,b] is said to be a positive extreme point for f—r
provided f(x)—r(x)=|f—r| or x€U~S and r(x)=0. Likewise,
x€la,b) is said to be a negative extreme point for f—r provided
Jx)—r(x)=—||f—r] or x€L ~S and r(x) =0. Let X, denote the set of
all positive and negative extreme points for f— r. Note that X, is a compact
subset of {a, b]. Now define ¢ on X, by

o(x)=1 if x is a positive extreme point,

o(x)=-1 if x is a negative extreme point.
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Also, define sg(f(x)) for f at each x € [a, b] as follows:

sg(f(x))=0 ifx€Ss,
sg(f(x)) =sen(f(x))  iff(x)#0,
sg(f(x) =1 iff(x)=0andx& Sand3p >0>
. (x—p,x+p)NL=¢and (x—p,x +p)NU#g,
sg(f(x))=—1 iff(x)=0andx€& Sand3p > 03

(x—=p,x+p)NL#£gand (x—p,x +p)NU=4.

- 3. EXISTENCE AND CHARACTERIZATION

For copositive rational approximation the following existence theorem
holds.

THEOREM 3.1. Given f€ Cla,b), then there exists r* € R/a,b] such

that
%
lr=rii= it =l

We do not present the proof of this theorem as it is the same as that for
the usual unconstrained rational approximation [1] with the additional
observation that the copositive property is inherited by the limit rational
function.

Next, we shall show that best copositive approximations can be charac-
terized by alternation and a Kolmogorov criterion. Unlike the classical
theory, only partial results concerning a zero in the convex hull charac-
terization are known. We start by defining the concept of an alternant and
present two lemmas which are used to prove the alternation theorem.

Let x;,y,€X, be such that x, <y, (x,y)NX.,=9¢, (x;,y;)NS=
{Ziv 1o Zigy s ;20 for i= 1., and y,<x;yy for i=1,.,u—1. We
shall say that /' — r alternates once between x; and y; if o(x;) = (—1)"* ! a(p,).
Whereas f—r alternates twice between x; and y;, if sg(f(x;))o(x;) =—1,
o(x;)=(—1)""6(y;) and there exists at least one z; € (x;,y;)N S at which
r'(z;) = 0. In addition, f'— r is said to alternate once in each of the following
cases:

(i) On (a,p) if y€X,, [a,y)NX, =6, (a,y)NS={z,,, 2.}, v2 1,
sg(f(»))o(y)=—1 and r has at least v+ 1 zeros in [a,y]N(LUU)
counting multiplicities up to order 2. When this occurs, we write x, =a,
¥, =y, abusing our notation that x; € X,.
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@ity On (x,0) if x€X,, (,b]NX,=¢, (X, DYNS ={z,_ ., ss Zs}s
v 21, sg(f(x))a(x)=—1 and r has at least v + 1 zeros in {x,bj N (LU U)
counting multiplicities up to order 2. Here again we write x, = x, y, =b so
that y, € X, in this special case.

We say that the set of intervals {(x;,y,)}%. | is an alternant of length I for
f—r if f—r alternates w,; times on (x;,»,), where w,=1 or 2 as defined
above and } ¥, w, =L

LemMa 3.2, If x,y€X,., x<y, (y)NX,.=¢ and (x,y)NS=
{Zse 2, v 20 (v =0 implies that (x,y) M S = ¢), then

(i) sg(f(»)=(=1)" sg(Sx)),
(il) sg(S(x))o(x)=—1 and  o(x)=(~1)"a(y) imply  that
se(V(»)o(y)=—1,
(i) sg(f(x)) o(x) = —1 implies that | f(x)] <|r¥*(x)).

Proof. (i) We first note that sg(f(x))#0 on I'=|xy]~S by
definition. Furthermore, we claim that sg(f(x)) is constant on each
connected subset of I To see this it suffices to consider |x,z,). Thus,
assume that there exists ¢, € (x, z,) such that sg(f(¢,)) = —sg(f(x)). Without
loss of generality we shall assume that sg(f(x))=1, then there exists
g1, P, > 0 for which

x—pLx+p)NU*9, (x—=p,x+p)NL=9¢,
(ty— Pty +p)NU=9¢, (to—pasty +p)NL#9.

Let I, =inf{t € {x, ¢, + p,]: t € L}, then I, > x (since [, € L and x € L). Also
[, must be an element of U (if not then f changes sign on an interval, namely,
{uy, ], where u, =sup{t€la,bl: 1</, t€U}). Hence [, ELNU=S,
which is a contradiction since [, € (x, z,). Thus, sg(f(1)) = sg(f(x)) for all
t € (x, z,). Finally, observe that sg(f(x)) changes sign at each point of S.
Indeed, each point of S is a cluster point of L° and U° by definition and the
above argument shows that the points of S locally separate L° and U°. From
this (i) follows.

(i) If sg(f(x))o(x)= —1 and o(x) = (—1)” g(»), it follows from (i) that

sg(S(») o(y) = (1) sg(f(x)) - (—1)" o(x) = sg(f(x)) o(x) = —1.

(iii) We show that sg(f(x))o(x) = —1 implies that |f(x)] <jr*(x)|. We
consider the case of sg(f(x))=1 and o(x)=—1. Then either f(x) >0 or
f(x}=0 and there exists p>0 such that (x—px+p)NU+4,
(x~p,x+p)NL=¢ and either f(x)—r*(x)=—||f—r*| or xEL~S,
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r¥(x)=0. We notice that if f(x) >0 or there exists p >0 such that
x—p,x+p)NU#¢, (x—p,x+p)NL=¢, x cannot be an element of
L ~ §. Therefore, in both cases we have

Sy =r¥(x)=—|If—r*]|=0</(x) < r*(x).
Similarly, if sg(f(x)) = —1 and o(x) = 1, we can show that
r¥(x)<f(x)<o. 1

LemMA 3.3. Assume that x;,y; € Xpe, (X Y) NS = {21410 244} and
f—r* alternates w; times between x; and y;. Let rE€RJa,b| satisfy
If—=rll <If=r*|l, then:

(i) Lr*(x)=r(x)=0 (or r*(y) =r(y) = 0), then r* —r has at least
v+ w; + 1 zeros in [x;, y;].
(i) I r*(e) # r(x), r*(y) # r(y,) and w; = 1, then r* — r has at least
v+ w, zeros in (x;, y;)
(i) If w;=2, then r* —r has at least v + w; zeros in (x;,y;).

Proof. (i) In this case w,; must equal 1 by Lemma 3.2 since r*(x;) =0
implies | f(x;)| € |r*(x;)| which implies that sg(f(x,)) 6(x;) # —1 and neither
r* nor r can change sign at x, (as x,€ L U U~ S). Therefore r*'(x,)=
r'(x;) =0 so that r* — r has at least v+ 2 = v + w; + 1 zeros in [x;, y;]. (The
same argument establishes this result when r*(y,) = r(»,).)

(ii) Suppose that w, =1 and consider the case where o(x;) = —1 and v is
odd. In this case we must have o(y,) = —1, r*(x;) > r(x;) and r*(y,) > r(y))
Now, if r* —r has only z;,,..,z;,, as simple zeros then (r* —r)(x;) >0
and v odd implies that (#* — r)(v;) < 0. Thus r* — r must have at least one
of z,,,y.,2;,, as a zero of order at least 2, or another zero in (x;,y;)
different from z; ,,..., z;,,. Hence r* —r has at least v+ w, (=v + 1) zeros
in (x;, ;). The other cases follow by similar arguments.

For the two special cases where w, =1 on (a,y) with [a,y)NX,.=¢
(that is, x, =q and y, = y) or w, =1 on (x, b) with (x, 5] N X,. =¢ (that is,
x,=x and y,=»~), consider the case of w,=1 on (a,y) with
[a,y) N X,.=¢ (the other case follows by a similar argument). In this case
sg(f(¥))o(y)=—1 and r* has at least v+ 1 zeros in |a,y]N (L U U),
where (a,y] NS ={z,,..,2,} with v> 1. Now sg(f(»))a(y)=—1 implies
that [r*(y)| > |r(»)| (since, for example, if sg(f(y)) =1 then o(y)=—1 only
with f(y) — r*(y) =~ [/~ r*).

Also, r* has at least v+ 1 zeros in the set [a,y] N (L U U) counting
multiplicities up to order 2, which implies that r*’(z;)=0 for some
JE{L,..,v} as [a,y)NX,.=¢ allows r¥(x)=0 for x€ [a,y]N (LU V)
only if x€ 8. If r* —r has a zero in (z;,y) other than z;,,,.., z, we are
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done. On the other hand, if r* — r vanishes in (z;, y) only at z;,,,..., z, and
each of these is a simple zero then we have |r*(¢)| > | r(¢)] in every interval of
the form (z,_,,z,), I =j+ 1...., . Looking at (z;, z;, ,) this inequality implies
that r'(z;) = 0 and hence r* — r has at least v + 1 zeros in (a, y).

(i) Suppose that w, = 2. Here we must have
sg(f(x))) o(x) = sg(S (¥ ) o(yi) =—1,
and
|fGe) —r*Ce)l =1/ (y) = r* (vl =|f —r*|
s0 that

[P ()l > rx)l and [P ()l > [r(p)l

Let z; be the first element of (x;,y,) N § for which r*'(z;) = 0. Now, suppose
that r* —r vanishes in (x;,z,) only on {z;,,,.,2;_,} (set is empty if
j=i+1) and all the zeros are simple. Then, |r*(¢)] >|r(f)] must hold in
(z;—p, z;) for some p > 0. Thus, r'(z;) =0 as r,r* € C*[a, b). But r and r*
change sign at z; and hence r"(z;) =r*"(z;) =0; that is, r* —r has z;, as a
zero of order at least 3 and the result follows. Now assume that r* — r has
simple zeros at z;,,,.,z;_, and one additional zero in (x;,z;)~
{Ziy 19 2;_y}. This implies that [r(z)] > [r*(¢)] holds on (z;_, —¢,z;) for
some £ > 0. Thus, if r* —r has only z;,,..,z;,, as simple zeros and no
other zeros in (z;,y;) then we must have |r(y)| > |r*(y;), which is a
contradiction. Hence r* — r must have an additional zero in (z;, ;) proving
that r* —r has at least v + w, zeros in (x;, ;). The proof of Lemma 3.3 is
now complete. [l

THEOREM 3.4 (THE ALTERNATION THEOREM). Let f€ Cla, b] ~ R7|a, b]
be an admissible function and S =|z,,...,z,}, k< m as described earlier.
Then r* € R/ a, b] is a best approximation to f if and only if there exists a
set of open intervals {(x;,y,)}¥_, which is an alternant of length N —k for
f~—r*, where

N =1+ max{n+ dp*, m+dq*}, r* =p*/q*.

Proof. (<) Suppose that {(x;,y,)}{_, is an alternant of length N —k
for f—r* and there exists r € R/{a, b] for which || f—r|| <||f—r*||. Then,
using Lemma 3.3, we show that r* —r has at least N zeros (counting
multiplicities up to order 3). To that end, let {1,..,u} =1,U1, where i€ [,
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if and only if (i) of Lemma 3.3 holds true on (x;,y;) and i € I, otherwise,
i = l,..., u. Now, assume that there are

n elements of S in {J (x;, 7)),

iel,

d elements of Sin (J (x;,¥,),

ielg
and

k — n — 6 elements of S in the rest of |a, b].

It is now easy to observe that r* — r has at least

n+ Y w;+cardl, zerosin {J) (x;,¥;)

iel, iely

5+ Y w,zerosin J (x;,¥)

iely ielp
and

k —n — 0 zeros in the rest of [a, b].

In addition,

n+ > w;+cardl, +6+ > w,+k—n—20
i€l iely

M
=k+ Z w;+cardl,=k+N—k+cardI,>N.

i=1

This shows that r* —r has at least N zeros in [a, b], which implies that
r¥=r (since r¥ —r=(p*q—pg*)/q*q with the degree -of the numerator
LN -1).

(=) Suppose that /€ R'[a,b] and r* € Ra,b] is a best copositive
approximation to f. Assume that {(x;, y,)}}_, is an alternant for f— r* with

¥ w;=1< N —k where [ is maximal. We shall construct a new function
r € R/a, b] for which || f—r|| < | f— r*||, thus contradicting the assumption
that / < N —k. We assume that S +# ¢. The assumption that / is maximal
requires that for each i = 1,..,u — 1 there are no alternations in [y, x;,,].
Specifically, for each x € (y;, x;,,|NX,. with [y, x] NS ={z;, 1se» Z;1 .},
v>0 we must have o(x)=(—1)"0(y;,). Furthermore, if there exists
;€ | y;, x| NS with 7*/(z;) =0 then we must also have [r*(y)| <|/()l
(since [f(y)| <|r*(y,) implies that sg(f(y;)o(y;)=-1, which in turn
implies that f— r* alternates twice between y; and x) and hence |r*(x)| <

| S ()
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We begin by constructing a set of /+ k distinct points in (a,b) and a
function p + r*q € S,. that vanishes at these points. Then we can find a
rational function belonging to R [a, b] that gives the required contradiction.

Consider the interval (x;,y;) for i=1,..,u. If w,=1 define a point
s; € (x;, ;) as follows:

First, consider the case where (x,y)NS=¢. If r*({)# 0 vVt € (x;, ;)
set 5;=(x; +»;)/2. On the other hand, if r*(t) =0 for some ¢ € (x;, y;), set
f; =min{t € (x;, y;): r*(t) =0} and ¢/ = max{t € (x;, y;): r*(¢) = 0}. Now, if
X €X,. and sg(f(x))olx)=1, set s;=(]+y)/2; if x,€X, and
sg(f(x;)) olx;)=—1, set s;,=(t{ +x,)/2. Next, consider the case where
iy )OS =1z, s 2;,,}. Define ¢/ and ¢’ as above and note that
Uz, 2z, If sg(f(x)ox)=1 set s;,=@/+y)/2; if
sg(fx))olxy=—1,set s, =(t{ + x,)/2; if x, =a, |a,y,) N X,. = ¢, set 5, =
(¢t +¥,)/2. Observe that if | f(x;)] <|r*(x,)] and there exists z; € (x;, )N S
for which r*’(z;)= 0, we must have | f(y;)| > |r*(p;)| since w; = 1.

Finally, consider the case where w,=2. In this case (x,y)NS=
{Zig 1o Zinoh V21, P*(2;)=0 for at least one z;, i+ 1<j<i+,
[fOx) <|r*(x;)| and | f(y)l <|r*(p,)l. With ¢/ and ! defined as before, set
5= (] + x,)/2 and s{ = (i + y)/2.

Let T denote the set of all the points {s,}\U {s;} U {s/} constructed above
and set Z=T7TU S. Note that Z consists of precisely /+ &k < N distinct
points. Since S,. is a Haar subspace of dimension N on an interval larger
than {a, b}, there exist p € I1,, and ¢ € I, such that p + r*q has simple zeros
only at the [ + k points of Z. We shall show that there exists £ > 0 such that
r.=r*—e(p+r*q)/(g* + eq) is copositive with f and || f~—r,)] <||f—r*||
(notice that r.= (p* — ¢p)/(q¢* + €q)). Suppose that v(y)=(p +r*q)(y)
satisfies sgn v(y,}) = —o( y,) (this can be easily done by multiplying v by —~1
if necessary). Since v has simple zeros at the [/ + k points of Z and only at
these points, it is easy to conclude that sgnv(x;) = —o(x;) and sgno(y;) =
~o(y;) for i = 1,..., u provided that x, € X,., y, € X,..

Now we consider the interval | p;, x,, ) for fixed i, i=1,..,u — 1 and we
first show that there exists £ > 0 such that for all ¢, 0 < ¢ £ we have
MK, ey, . /00 = r0)] < |f~ r*||. Since sgnv(y;)= ~o();) and f— r*
does not alternate on |y, x;, ,|, we must have sgnuv(x)=—o(x) for all
xE€ |y xi g INX,.. Thus, if [yox  0NS={z,, s 2;,,} and we set
to=Yi» 4=2; j=lu,v, t,,,=x,,, then for any t€ |t ),
J=0,1,.,v we have o(y;) v(t)(—1Y <O and for any x€ |1, ¢, ,]NX,.,
o(x)=(—1Y a(y,). Fix j, 0<j< v, and without loss of generality assume
that o(y;)=1 and j is even. Then, for all t€ ¢, 4, ], —[l/—r¥|<
(f=r) K| f—r*l. Thus, by the continuity of f—r* and the
compactness of [¢;,¢;, ], there exists { > O such that

(f=rO -l +§  Ye€ly, 4, )
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Now let &' > 0 be such that ¢’ |g(t)] < g*(¢) for all t€ [t;, ¢, ,], then for
every ¢ such that 0 <& <¢’, g* + €q is positive on [¢,,#,,,] and r, converges
uniformly to r* on [t,,¢;,,] as ¢ 0. Thus, noting that v(t) <0 for all
tE [t;,t;, ] since j is even and o(y;) = 1, there exists ¢, with 0 < ¢; < &’ such
that for every e with 0 <e<¢; and ¢ € [1;, ¢, ],

L0 NP S
Also, since v(f) <0 on (¢;,¢;,,), then for £ > 0 and ¢ € (¢}, £, ),

ev(t)
(@* +eq)(?)

But (f—r)()=0 for any / such that 0</<v+1, v(t,) <0, and
(=1)**'o(t,,,) > O imply that

(f=r)O)=(—r"0)+

(f=r)O)=(—r"0)+ <[ f=r*.

(f=r)O)<||f—=r*| for any t € [¢;,¢;, ],/ even.
Thus, we have

—f=r* I <U=rd@ <If=r*], Vi€ [t;,4.,],) even,

which finally shows that

max |(f=r (O <|Lf = r*].

telt; tpyy

A similar argument works for odd j such that 1</ j<v. Define
£=miny,,&;, then we have

max |(f—r)x) <||/—r*|, Ved0<egE

x€ly;,xie1l

Next we show that there exists £ > 0 such that for each ¢, 0 < ¢ <&, 7, is
copositive with f on [y;,x;,,]. Note that both f and v change sign in
[ yi»x;4,] at the points of | y;, x;,,]M S. Thus either v or —v is copositive
with f on [y;,x;,,]. First, consider the case where there exists
2, € [y x;,|NS with r*/(z;)=0. In this case [r*(y,)|<|f(y))| and we
claim that f is copositive with —v. Indeed, suppose that o(y;) = —1, then
either f(y;)—r*(y)=—|f—r*|, which implies that f(y;) < r*(y,) and
hence |r*(y)| <|/f(y)| implies that f(y;) <0, or r*(y;)=0 and y, €L,
which shows that fand —v are copositive since sgn v(y;) = —0(y;) = 1. The
case when o(y;) =1 follows in the same manner. Thus, in this case, for any
£>0 with &|g(x)|<g*(x) for all x&€ [y, x,,,], we have r, and f are
copositive (since r,=r* —ev/(g* +¢eq)) on [y, x,.,| for all ¢ with
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0 < ¢ < & Second, consider the case where [y;,x,, ;]S ={z,, 1y Z;4 b
v 0 and r*'(z;) # O for all z;. If fand —v are copositive we are done. Thus,
assume that f and v are copositive on [y, x;,,]. Suppose that
x€ELUUYN([y;%;11] ~S). Then we claim that r*(x) # 0. Indeed, if, for
example, x€LN([y;,x;,,]~S) and r*(x)=0, then x€X, and
o(x)=—1. But x € L ~ S implies that v(x) < 0 since v is copositive with f,
which contradicts sgn(v(x)) = —o(x). Thus r* and v vanish only at the
points of S in I'=[y;, x;,,] N (LU U) and they both change sign at these
points. Also, sgnr*(x)=sgnuv(x) for each x €I (since f, r* and v are
copositive). Now, at each z;€E '™ § we have r*'(z;) # 0, thus there exists
6, <iminf{z;,, , —zzi=1l,..k~1}, 6,>0 such that r*(x)#0 in I,=
[z;—0;, z; + 6;]. By the mean value theorem, for each x € I, there exists ¢,
and 6, between x and z; such that r*(x)=r*({)(x—z) and v(x)=
v'(d,)(x — z;). Hence, we can select ¢, >0 such that 0 <e<¢; implies
|r*(x)| > & |v(x)| for all x € I; (by choosing ¢, = min,,, |r*'(1)/v’(1)]). Repeat
this argument for each z;€EI'MS and let ¢ =min;¢;. Thus |r*(x)| >
' |v(x)| for all x€ Ui, I;. Now I'— U4 (z; —6,,z,+ 6)) is a compact
subset of [a, b] on which r* does not vanish,. hence there exists ¢” > 0 such
that [r*(x)| > e" |v(x)| for all x€T' — ). ,(z;—6;,2;+ ;). Choose ¢, >0
such that . g |g(t)| < g*(t) for all t€|y,x,,] and let m=
min,e(y, o 119%() + €4(1), ¢*(r)}. Note that g*(1) +eq(t)>m for all
t€ |y;,x;,.] and 0 < € < &y. Define £ by & = min{e,, &', €”, me', me"}. Then
for any t€ [y;,x;,,] we have that |r*(1)| > e(v(r)])/(g* + eq)(¢) for any €
satisfying 0 < ¢ < & From this it follows that r, is copositive with f on
[¥i»x;4.] for every ¢ with 0 < ¢ &

Next, we consider an interval of the form (x;, y;}, i fixed, 1 < i< u. Select
0 >0 sufficiently smail such that f—r* does not alternate on either
[x;5x; + 6] or [y;— 8, y;]). Since sgnv(x,)=—o(x,), sgnv(y;) =—0(y;). by
using continuity and compactness as before, we can show that there exists
¢’ > 0 such that 0 < ¢ < ¢’ implies

MAX gy SO =) <= r ]

x€lx;,x; +8]U[y;~ 8,

Also, for ¢ > 0 sufficiently small,

max ) |f(x) = rx)| < IS =r*|

x€[x;+8,y;—

since (x;, ;)M X,. = ¢, which implies that |f(x) — r*(x)| <||.f— r*|| for all
X € [x; + J, y,— d]. (Note that this is also true if x, =@ and [a,y,) N X,.=¢
ory,=band (x,,6]NX,.=¢.)

Now it remains to prove that for ¢ > 0 sufficiently small, r, is copositive
with fon |[x;, y;]. First we note that if w; =1 and sg(f(x,)) o(x;) =1 so that
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sg(/(x;)) sgn v(x;) = —1 then the facts that s; > z; for each z, € [x;, ;] NS
and f,v change sign only at the points of Z imply that f and —v are
copositive on [x;, s;]. Thus, r, is copositive with fon [x;, s;] for every ¢ > 0
satisfying €|g(t)| < g*(t) for all t€ [x;,y;]. Now, consider the interval
(s;»y;) and note that s;=(¢t/ +y;)/2 implies that r*(t)#0 for any
1€ [s;5 ;) Also, a(x;)=(=1)"""a(y;) and sg(f(x;)) = (—1)" sg(f(;)) (by
Lemma 3.2(1)) imply that sg(/(»)) a(»;) = —1, hence |r*(»)] > /()] (by
Lemma 3.2(iii)) (that is, r*(y;)# 0). Thus r*(z)# 0 for all t € |s,, y;] and
by continuity and compactness arguments as before we can find ¢, > 0 such
that 0 < e <¢, implies r, and f are copositive on [s;,y;] and hence on
[*;»»;]. Similar arguments hold in the case of w;=1 and sg(f(x;)) o(x;) =
—1l or w,=1, x,=a and sg(f(y,)o(y)=-1, or w,=1, y,=b and
sg(f(x,)) o(x,)=—1. Now assume that w,=2. In this case there exists
z,€ [x;, »;]N'S such that r*'(z;)=0 and v vanishes at 5 <z;,, <. <
z;,,<s/ and only at these points in |[x;,»;]. Also sg(f(x;)o(x;)=
sg(/(3))o(y)=—1. Hence sg(f(x,)sgnv(x)=se(/(»,)senv(y;) =1
and fand —v are copositive on [s/, s;']. For the intervals [x,, s/| and [s], y,],
r* is never zero (by choice of s/ and s/ and the fact that |f(x;)] < |r*(x;)|
and | f(y;) < |r*(y;)|). Using the same argument as given before, f and r, are
copositive on these intervals for a proper choice of ¢ > 0. Thus r, is
copositive with fon [x;, y;].

Finally, consider the case where y, < b. Here, using the same argument
given for the [y;, x;,,] case we can show that max,.,  |/(x)—rx) <
|f—r*| for ¢ > 0 sufficiently small. Moreover, if sg(f(y,))o(y,) =1 then
sg(f(y,)) sen v(y,)=—1 implies that /" and —v are copositive on [y,, b|
and hence r, is copositive with fon [y,, b| for any &€ > 0. On the other hand,
if sg(f(y,))o(y,)=—1, then f and v are copositive and r* vanishes in
[».,b] only at [y,,b] NS and each of these is a simple zero. Then, by the
same argument used for the [y, x;,,| case with r*'(z)#0 for all
z;€ [y, X4, ]M S, we can show that for ¢ > 0 sufficiently small, r, is
copositive with fon [ y,, b]. Similarly, we can show that r, is copositive with
fon [ax]|if x,>a

This covers all possible cases and shows that for a proper choice of ¢ > 0
sufficiently small, r, is copositive with fon [a,b| and || f—r|| <|.f—r*],
which is a contradiction, and the proof of the alternation theorem is now
complete. [

The second type of characterization for a best approximation, r*, is a
modified Kolmogorov-type characterization. Define

S,.={p+r*q:p€Il,, q€ I, pcopositive with /'},
Sy ={x€ [a,b]:|/(x) - r*) =/~ r*|},
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S,={x€la,b]:r*x)=0,xE(L VU~ S)},
a(x) =sgn(f(x) — r*(x)) for x& S, U S,

(o(x) is defined as before for x € §,U S,). Thus, we have

THEOREM 3.5 (KOLMOGOROV CRITERION [5]). Let f€ Cla, b] ~ R}|a, b|
and r* € R[a, b}, then r* is a best approximation to f from R {a, b if and
only if for each h € S,., min ¢ s, 0(x) A(x) <O.

The proof of this result follows via the usual arguments. Note that,
comparing this Kolmogorov criterion for copositive rational approximation
with that of rational approximation with interpolation [4], one might expect
that S,.={p+r*q: pell,, q€1,, p(x)=0, YxE S} could be used
instead of S,.={p+r*q: p€E N,, q€ II,, p copositive with f'}. Indeed, the
Kolmogorov criterion holding for S.. is a sufficient condition for r* to be a
best copositive rational approximation. However, with r* being a best
approximation to f from R/{a, b}, the condition min, ¢ 5,5(x) A(x) <O for
each 4 € S/. need not hold whenever there exist x, y € X,. such that x <y,
(x, )N X,. = ¢, and f— r* alternates twice on (x, y). This can be shown by
considering simple examples. Thus, the copositiveness assumption in S,. is
essential for Theorem 3.5.

As the final type of characterization for a best approximation r* we
consider the possibility of an “origin in the convex hull” type of charac-
terization. Here, the results are not as complete as that for the standard case.
Once again, we simply state these theorems without proofs as the standard
arguments suffice.

THEOREM 3.6 (SUFFICIENCY |5]). If the origin of Euclidean l-space, O,
belongs to the convex hull of the set |6(x)X:x € X,.}, £=(9,(X)s.., 9,(x))
where {@,,...,9,} is a basis for II,_,w(x)+r¥(x)1,, o(x)=(x—2z)-
(x — z,), then r* is a best approximation to f from R a, b].

It is worth mentioning that the conclusion in Theorem 3.6 can be made
stronger by replacing R/[a, b] by R"={reR™a,bl:r(z)=0, i=1,.,k}
without any vital change in the proof. On the other hand, the converse of
Theorem 3.6 does not hold true and to prove necessity, more restrictions are
needed that make the origin belong to the convex hull of a smaller set as
shown in the following theorem.

THEOREM 3.7 (NECESSITY [5]). Suppose that r* is a best approximation
to f from R,|a, b), then O, belongs to the convex hull of {o(x)X:x € X,.}, £ =
(8,(X),.... 6,(x)) where {,,..,8,} is a basis for S,.={p+r*q: pell,,
g € I, p has same zeros as p* and of at least the same orders}.
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4. UNIQUENESS AND STRONG UNIQUENESS
OF BEST APPROXIMATIONS

We start this section with a lemma which plays an essential role in the
uniqueness and strong uniqueness for best copositive rational approximation.

LEMMA 4.1. Let r*=p*/q* €R/a,b] be a best approximation to
SECla,b]~R}|a,b]. If there exists r=p/q€R/]a,b] such that
a(x)| p(x) — r*(x) q(x)] > 0 for all x € X,., then p—r*q=0.

Proof.  Suppose that there exists r = p/g € R |a, b] such that o(x)[ p(x) —
r*(x) q(x)] > 0 for all x € X,... Further, assume for a proof by contradiction
that p — r*q#0. Under this assumption, we show that there exists an
k€ S,. with a(x) h(x) > 0 for all x € X,. which is a contradiction to the
Kolmogorov criterion given in Theorem 3.5. To that end define

p=p+p* §d=q+q* F=p/q
and note that

o(x)[ Alx) —r*(x)§(x)] >0,  VxeX,

(since p—r*§=(1/g*)[(p+p*)q* —p*(g+q*)]=p—r*q). Now, our
object is to find p, € I, q, € I, such that

(i) P+ Ap, is copositive with f,
and

(i) o)(F+ip) —r*(d + Ag,))](x) > 0, Yx € X,., where A is a positive
constant.

First, observe that

. . 1
(B +4p) —r*(G + Aq)) = [(p+p*+Ap)g* —p*(g + g* + 1q,)]

1
= [pg* + Ap,q* — p*q — Ap*q, |
=(p—r*q)+A(p, —r*q,).
Thus,

o(X)[(F +Ap) —r*(d + Ag)](x)
=a(x)(p — r*q)(x) + Ao(x)(p, — r*q,)(x).
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Hence for A > 0 chosen sufficiently small, conditions (i) and (ii) stated above
become equivalent to:
Find p, € I,, and q, € II, such that

(i) p(z)=0 for all z€ S and p, is locally copositive with f at every
z€ S at which p’'(z)=0 (we say that g is locally copositive with f at
x€ [a,b] if there exists §>0 such that g is copositive with f on
[x—d,x+ 8] M {a, b))

(i) o(x)(p, —r*q,)(x) > 0 at every x € X,. at which (p — r*q)(x) =0,
say {p, — r*q,)(x) = a(x) at these points.

It is worth noting that if x€ S, ={x€ X,.: f(x)=0, x&€ (UUL)~ S}
then (ii’) implies that p, is locally copositive with f at x. This is because
x€ §, implies that A(x)=p(x)+p*(x)=0 so that p(x)=p*(x)=0
implying that (p — r*¢)(x) =0 and hence p,(x) = a(x) by (ii").

Now, if (i') is to be satisfied then we may write (p, — r*g,)(x) in the form

(pr—=r*q)(x) = (x = z,) - (x — 2)[(p, — Fg)(x)];

where p,=p,/[15.,(x—2z), F=p/g* with p=p*/TTi ,(x—z). Thus
p,—Fq, €1, _, +FlIl,, which is a Haar subspace of C|a, b] of dimension

d=1+ max{m —k + dog*, n + 9p}
=1+ max{m—k+dq*,n—k + dp*}
=1+ max{m+dq*,n+dp*} —k=N—k.

Assume that 7, ..., 7, are the elements of S at which p’(z) =0 and %,,..., X,
are the zeros of p—r*q in X,.. Thus, our problem reduces to finding
nonzero polynomials p, € IT,,_, and q, € IT, such that

pZ(fj): ilv .]= 1a---a l’
and

k

[T &= 2P —Fa)E) =0(),  j= 1Lt

i=

which can be done if [ + ¢t < d (by definition of Haar subspace of dimension
d). Now, if I+ ¢<d, then there exists p, — g, with the above properties
implying that there exists an h=p+ Ap, —r*(d + Aq,) € §,. such that
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o(x) h(x) > 0 for all x € X,., a contradiction to Theorem 3.5. On the other
hand, if /+¢> d we claim that p — r¥q has more than N zeros in [a, b]
(since p'(£;) =0 implies that p — r*q has a triple zero at every Z;, /= L,..., /;
and X,.N S = ¢ implies that p — r*q has at least

d+k—Il+t=k+1+t+I>k+d+1=N+1

zeros in [a, b]). But p — r*q € S,., a Haar subspace of C[a, b] of dimension
N. Thus, p—r*q=0, again a contradiction, and the proof is now
complete. 1

The following corollaries follow immediately.

COROLLARY 4.2 (UNIQUENESS). Let f€ Cla, b] ~R|a,b]. Then f has a
unique best approximation from Ra, b).

COROLLARY 4.3 (MODIFICATION OF THEOREM 3.5). Let r* be the best
approximation to f from R/a,bl. Then for every h€ S,. with ||h| =1,
min, .y . 6(x) A(x) <O.

Before stating the strong unicity theorem for copositive rational approx-
imation we need to define the concept of normality which plays an essential
role in the strong uniqueness result for the standard rational approximation
theory. The proof of the theorem is not presented here as it is essentially the
same as for standard rationals [1].

DEFINITION 4.4. Let f€ Cla, b] and r*=p*/qg* be the best approx-
imation to f from R {a, b]. fis said to be copositive normal if either op* =m
or dg* = n.

THEOREM 4.5 (STRONG UNIQUENESS). Let r* € R a,b]| be the best
approximation to f from R (a, b] with (p*,q*) =1, where f€ C|a, b]. If fis
copositive normal then there exists a constant y=y(f) > 0 such that for all
r€Ra, b]

W =rll 2 NS =r*li+yllr =l

The condition of copositive normality stated in Theorem 4.5 is essential
for strong uniqueness to hold true. This is shown by the following theorem in
which we assume, without loss of generality, that [a, b] = [0, 1]. The proof is
omitted for brevity and it can be found in [5].

THEOREM 4.6. Let f€ C[0, 1]~ R7|0, 1] be non-copositive normal and
r* =p*/q* be the best copositive approximation to f from R0, 1], then the
strong uniqueness theorem does not hold for f.
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5. CoNTINuUITY OF THE BEST COPOSITIVE RATIONAL
APPROXIMATION OPERATOR

As in the standard rational approximation theory, the strong uniqueness
result implies Lipschitz continuity of the best approximation operator at
copositive normal points. However, we need to restrict the domain of this
operator to a subset of the continuous functions defined on [a, ] and
copositive with fin order for this result to be true.

Let f€ Cla,b]. For any g€ Cla, b}, let 7(g) be the best copositive
rational approximation to g from R,|a, b]. Define

Cila. b] = {g € Cla,b]: g(x)/(x) > 0, Yx € [a, b]
and
C~,[a, bl={g€C/la,bl:g(x)=0,¥x € [a,b] ~ (LU U)}.

Then we have

THEOREM 5.1. If fE€RJa,b) or f is copositive normal then t is
continuous in the sense that there exists a >0 such that g€ C/la, b]
implies that

le(g) = (N <Bg—flI

In the above theorem, the restriction of the domain of the operator to
C/la, b] is essential. An example to illustrate this fact is given in [5].

6. DISCRETIZATION

In this section the set |a, b] is replaced by finite subsets of it and a brief
summary of some results is presented. We assume that X;, j=1,2,.., is a
finite subset of [a, b] containing j points, X;< X;,, for all j and that X;
becomes dense in [a, b] as j— oo (that is, each point of [a, b] is either a limit
point for {2, X; or belongs to X; for j > j,). In this case, there may exist no
r¥ € R{X;) such that r} is a best copositive rational approximation to f on
X;, where R{AX,)=1{r=p/q:p€M,,q€1l,, q>0o0n X; and r(x)f(x) >0
on X;}. However, we have

THEOREM 6.1 [5]. Let f€ Cla, b and r* be the best rational copositive

approximation to f from R/a, b]. If e;=inf,p x|/ = rllx,, €=l —r*la)
then e;— e as j— co.
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A more general result about approximating on finite sets that are
becoming dense in an interval is given in the following theorem.

THEOREM 6.2 [5]. Let r* be the best approximation to f€ Cla, b] from
R/|a, b]. Let {f;} be a sequence of functions defined and copositive with f on
X; and {r}} be a sequence of rationals such that r;=p;/q; € R{X)),
12+l =1 and 1Sy r,lly,<e;+ 1ji where &= inf,q iy 1=l
Suppose that ’

(i) X;cX,,, and X; becomes dense in [a,b] as j— oo, and
(i) fi~fasj- o (ie, sznf}_f”xj"oasj"’ o).
Then

@) MfG—=Slx, = LS = r*|l and
(b) r;>r* in measure.
Moreover,

(c) iffis copositive normal then r;— r* uniformly.

For characterization of best copositive rational approximations in this
setting we refer to restricted range work by K. A. Taylor [6] and Loeb et al.
[2]). This theory contains the theory of best copositive rational approx-
imation on X whenever X is a finite subset of |a, b]. Here we state two of
their theorems modified to our notation. As before the set S,. is defined by

S,.={p+r*q:p€f,and g€ I,}.

THEOREM 6.3 (KOLMOGOROV CRITERION [6]). Let f€& C(X) and
inf,c g cx) |f—ril=&>0. Then r* is not a best copositive rational approx-
imation to f if and only if there exists an h € S,. such that o(x) h(x) > 0 for
all xe€ X,..

THEOREM 6.4 (origin in the convex hull characterization [2]). Let
SE C(X) and r* € R(X), then r* is a best approximation to f from R(X) if
and only if the origin of Euclidean N-space lies in the convex hull of {o(x)%:
xE X,.}, where £ = (¢,(X),. 8p(%)), {95, @y} is a basis for S,..

Remark. 1t is worth noting that the property of the origin in the convex
hull holds as a necessary and sufficient criterion for the best copositive
rational approximation when approximating on a finite set. However, this
property does not hold true on [a, b]. More work needs to be done to give an
accurate mathematical illustration for this fact.

640/35/3-4
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